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Abstract: The efficiency of sustainability assessments of textile products is generally prevented
because of a lack of available and reliable data across complex and globalized supply chains. The
purpose of this study is to evaluate how blockchain traceability data can improve the Life Cycle
Assessment (LCA) of textile products and to measure the actual value of exploiting this specific
traceability data. To do so, a case study consisting of two LCAs modeling the production of wool
top lots in China was conducted. A first LCA was conducted with generic data and the second
with the added value of specific blockchain traceability data. Based on the second LCA, different
wool top lot composition scenarios were then modeled to account for the environmental impact of
different farming practices. Two main results were obtained: the environmental impact of wool top
lots can vary up to +118% between two batches depending on their composition, and the specific
data changes drastically from the impact calculated with generic data, with +36% calculated impact
for the same wool composition of batches. Therefore, it was concluded that blockchain traceability
data could be a strong asset for conducting LCA at the batch level by providing differentiated
data on batch composition and origin and providing readily available specific data for a more
representative assessment.

Keywords: LCA; blockchain; traceability; textile; wool

1. Introduction

From climate change to loss of biodiversity, from impacts on human health to impacts
on ecosystems and resources, industrial activity has been acknowledged as one of the main
drivers of our impact on the environment [1]. Therefore, industrial companies nowadays
observe the need to align with various and ambitious sustainability objectives set to ad-
dress the environmental emergency faced by humanity. They face both the toughening of
environmental regulations and increased expectations from consumers about the sustain-
ability of the products they buy. The textile sector is especially facing growing demand for
more sustainable products from consumers, and the potential of a soon-to-come general
environmental display on textile products has already been experimented and is part of a
law project in France [2]. Driving change towards a more sustainable production comes by
acknowledging, measuring, and managing the overall impact industrial stakeholders have
regarding various environmental sustainability topics.

The most common method used to assess the environmental impact of industrial
products throughout their value chain is the Life Cycle Analysis (LCA) method [3]. LCA
accounts for emission and resource consumption toward all activities involved in the
life cycle of a product and characterizes them into meaningful environmental indicators
such as climate change, ecosystem quality, health of the human population, and resource
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depletion [4]. However, it requires a large amount of specific and reliable production data to
model all the inputs and outputs of an industrial system adequately at different production
stages. It is very sensitive to the variation of such data [5]. Because of increasingly complex
and globalized supply chains of industrial sectors, including the textile sector, product life
cycle data is often scattered, lacks transparency, or is simply unavailable [6]. Approximately
80% of the time and resources allocated to LCA projects are used for data collection [7].

The lack of data accessibility and reliability throughout supply chains has recently
encouraged industrial companies to invest in traceability systems, which were helped by
the emergence of blockchain technology and its multiple benefits for supply chains [8]. The
main characteristics of blockchain, including transparency, immutability, and accountability,
have caused it to become one of the main enablers of decentralized product traceability sys-
tems [9]. First used by companies to monitor their product’s quality, security, or authenticity,
blockchain traceability has recently been studied to monitor environmental sustainability
by supporting life cycle inventories in LCAs. Indeed, the decentralized characteristics of
blockchain traceability systems could answer data collection problems in LCA and there-
fore help make impact assessment more representative of various industrial practices [10].
This refined impact assessment could drive a more sustainable supply chain management
in the textile sector with the capability to measure the impact variation of different batches
of raw materials, depending on the supplying and transformation stakeholders involved in
the production process.

This research paper aims to evaluate how blockchain traceability could improve
LCA results’ representativity in textile products by enhancing primary data collection
and quantifying this improvement potential against a generic LCA. An experiment was
conducted on wool top lots with the objective to measure how blockchain traceability
enables the refinement of the LCA data collection and calculation of environmental impact
at the level of product batches.

The paper is structured as follows. First, a literature review is conducted to analyze
the opportunities of using blockchain traceability in enhancing LCA (Section 2). Section 3
describes the proposed research method on how to integrate blockchain traceability into
the LCA process and introduces the case study. Results are presented and discussed in
Section 4. The study’s main limitations and the potential to integrate blockchain traceability
and LCA are discussed in Section 5.

2. Literature Review

Generally, the impact of supply chain activities accounts for up to 90% of the en-
vironmental impact of product processing companies [11]. Therefore, to enhance the
sustainability of the supply chain (Sustainable Supply Chain, SSC) and identify the main
lever for sustainable production, it is imperative to collect accurate and reliable data up-
stream of the production. The main challenge in establishing an SSC is the increasing
complexity of globalized and fractured value chains [6]. The geographical dispersion of
value chains increases the risk of vulnerability and makes traceability of products, track-
ing of production events, and risk management extremely complex [12]. According to
UNECE [13], only 34% of apparel products commercialized worldwide have traceability,
and among these, only 6% have total traceability going up the whole value chain. This
complexity also prevents the measurement and management of environmental impact at
different stages of production [11].

To ensure the sustainability of dynamic supply chains, a system needs to be readily
adaptable, allowing for frequent and simultaneous capture of diverse information across
different continents [14]. It also needs to handle the fragile information from other ac-
tors with a decentralized system that would not be subject to localized failure [15]. The
main challenges currently facing the establishment of sustainable supply are therefore
transparency, accountability, and traceability. These limitations related to the difficulty
of accessing data from activities across the supply chains thus affect the effectiveness
of LCAs, which experience a significant gap between their theorization and their actual
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application [16]. The primary data used in LCA allow the characterization and differentia-
tion of the specific activities and industrial processes from industrial/sectorial averages.
Therefore, the difficulty of collecting specific data, particularly during the LCI phase, is
problematic because it only allows for an approximate quantification of the impact, which
is representative of the average of a whole industry rather than specific to the value chain
of a production system.

Moreover, because LCA results might be highly sensitive to given input data, the
quality of the data must be documented and maximized [5]. Finally, a commonly discussed
topic concerns the temporal evolution of life cycle inventories of industrial processes and
activities, which suffer from high inertia in being updated. For example, some studies have
shown a significant temporal variation in LCA impact scores [17].

A blockchain traceability platform integrated with an impact calculation methodology
would provide transparent and traceable data along a product’s value chain and easily
map all inputs in fragmented and complex supply chains [16]. This would allow impact
calculations to be based on more reliable data, improving their value and representative-
ness [7] and facilitating the ecodesign process. The properties of the blockchain, such as
immutability, integrity, and data persistence [11], as well as the decentralization of this
network, would also allow easier access to data by all users of the network and establish
trust between actors who are usually distrustful of each other [18], making it easier to
make data available for LCA. A study was conducted with large Australian companies
in the materials sector to ask them about the blockchain’s contribution to improving LCA
methods [7]. The majority of the executives interviewed believe that this technology plays a
major role in overcoming the complexity of LCA projects, which are becoming necessary in
assessing the environmental impact of industrial products. Also, several papers have been
proposing model integration between blockchain traceability and LCA. For instance, Zhang
et al. [16] proposed an integrated framework and a multi-layer system architecture of a
blockchain-LCA model. Similarly, to operationalize a system linking LCA and blockchain
technology, Rolinck et al. [19] proposed a blockchain-based data management model to
simplify the realization of LCAs and discussed its application for aviation maintenance.

To ensure that blockchain technology is relevant to address environmental traceability
in the industry, the choice of this specific technology is to be clarified. First of all, it is im-
portant to note that different decentralized digital methods registering virtual transactions
exist, called Distributed Ledger Technologies (DLT). For example, the Tangle technology
uses a directed acyclic graph to hold the transactions [20] as well as the Hashgraph tech-
nology [21]. A SWOT analysis was conducted on those different technologies [21], and
it appeared that, compared to Tangle and Hashgraph, the main advantage of blockchain
technology was its level of maturity and successful implementation in the industry, other
DLTs being still largely experimental. However, blockchain technology is frequently con-
sidered a very energy-intensive technology, raising questions about its applicability for
environmental traceability [22]. To go beyond this myth, the heterogeneity of blockchain
technologies is to be assessed. For example, it stood out that private blockchains with a
Proof of Authority (PoA) consensus have a negligible energy consumption compared to
Bitcoin and its Proof of Work (PoW) consensus, the work of miners being the main source
of high energy consumption [22].

Overall, the scientific literature shows an increasing interest in exploring the potential
contribution of blockchain-based traceability systems to improve and refine LCA invento-
ries. Still, published research papers remain rather theoretical on the subject. There are still
few articles that consider its operationalization by proposing integration models or sys-
tem architectures. Research analyzing the implementation of such LCA blockchain-based
traceability systems in an industrial environment has not been proposed yet. One of the
obstacles to the operational implementation of LCA-blockchain systems in the industry
is undoubtedly the lack of quantified cost/benefit analysis of such projects. As such, this
research paper focuses on measuring the benefits of an LCA-blockchain platform in an
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industrial context to guide decision-makers to evaluate its implementation within their
scope of activity.

3. Research Method

To measure the contribution of blockchain traceability data on the realization of LCA,
the project was conducted in two stages on a real case study aiming to assess the envi-
ronmental profile of batches of worsted wool manufactured in China from the Chargeurs
Luxury Materials company.

First, a so-called generic LCA was conducted following ISO 14040s standards on a
product system defined jointly with the industrial partner. The goal and scope of the
LCA is described in the corresponding section (Section 3.1). The first generic LCA was
modeled using generic data from the Ecoinvent v.3 database and basic primary data from
the industrial partner based on this product system. The list of data sources for each
life cycle stage will be later presented in Table 1. In a second stage, a specific LCA was
performed with specific production data provided by the Blockchain traceability platform
of the industrial partner. The approach to performing an integrated LCA-blockchain
traceability is described in Section 3.2.

3.1. Case Study

This research project was conducted in partnership with two companies. The first
one, Crystalchain, is a company expert in the blockchain traceability of industrial products.
It develops and implements a blockchain traceability platform linked to visualization
and activity management tools for its industrial clients. The research partner has made
available all of its traceability tools used for generic data collection. Crystalchain uses
a private blockchain platform with a PoA consensus, significantly lowering the overall
energy consumption compared to other blockchains, as explained in the literature review.
It is based on the Ethereum technology, which was the first technology to propose the
creation of smart contracts and decentralized applications and now has a large community
of users.

The second company, Chargeurs Luxury Materials (CLM), is a world leader in wool
processing, which has already implemented an operational blockchain traceability platform
provided by Crystalchain. CLM provided the specific production data required to perform
the LCA.

The objective of the case study was to perform a cradle-to-gate LCAs of combed wool
batches, i.e., from the production of wool at the farm to the baling of batches of combed
wool ready for spinning. The functional unit was defined as “1 kg of combed wool top lots
at factory gate”.

The scope of analysis focused on the combing factory owned by CLM in China with
wool supply from three upstream farms: two farms in Australia and one in New Zealand.
Since CLM owns only the combing plant, we were not able to obtain specific production
data from the supplier farms. Therefore, we used generic inventory data from three wool
production farms in Australia and New Zealand found in the scientific literature from
an LCA study by Cardoso (2013) [23]. The representativeness of these three farms, with
different characteristics and production modes presented in Figure 1, was validated by
CLM managers. The latter confirmed that these three farm archetypes represent the wide
variety of production methods of their suppliers.
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Table 1. LCA processes and data source.

Stage PROCESS NAME Inputs/Outputs Generic LCA Source Specific LCA Source

Farming wool
production

Sheep Breeding | Farm 1,
Conventional, NZ

Fertilizers Cardoso [20]; Table 11 Cardoso [20]; Table 11

Pesticides Cardoso [20]; Table 11 Cardoso [20]; Table 11

Animal Feed Cardoso [20]; Table 11 Cardoso [20]; Table 11

Agriculture machinery Cardoso [20]; Table 11 Cardoso [20]; Table 11

Water Cardoso [20]; Table 11 Cardoso [20]; Table 11

Electricity Cardoso [20]; Table 11 Cardoso [20]; Table 11

Direct Emissions Cardoso [20]; Table 12 Cardoso [20]; Table 12

Greasy wool | farm 1 Cardoso [20]; Table 11 Cardoso [20]; Table 11

Sheep Breeding |
Farm 2, Intensive, NZ

Same as farm 1 Same as farm 1 Same as farm 1

Greasy wool | farm 2 Cardoso [20]; Table 11 Cardoso [20]; Table 11

Sheep Breeding |
Farm 3, Extensive, AU

Same as farm 1 Same as farm 1 Same as farm 1

Greasy wool | farm 3 Cardoso [20]; Table 11 Cardoso [20]; Table 11

Transport

Transport to Combing
Mill | from farm 1

Greasy wool | farm 1 Cardoso [20]; Table 11 Cardoso [20]; Table 11

Transport by boat CLM China Factory 2020 CLM China Factory 2020

Transport by train CLM China Factory 2020 CLM China Factory 2020

Transport by truck CLM China Factory 2020 CLM China Factory 2020

Transported greasy wool | farm 1 CLM China Factory 2020 CLM China Factory 2020

Transport to Combing
Mill | from farm 2

Same as farm 1 CLM China Factory 2020 CLM China Factory 2020

Transported greasy wool | farm 2 CLM China Factory 2020 CLM China Factory 2020

Transport to Combing
Mill | from farm 3

Same as farm 1 CLM China Factory 2020 CLM China Factory 2020

Transported greasy wool | farm 3 CLM China Factory 2020 CLM China Factory 2020

Combing Mill
Processing

Wool Blend
Composition

Transported greasy wool | farm 1 Same as specific Crystalchain Traceability

Transported greasy wool | farm 2 Same as specific Crystalchain Traceability

Transported greasy wool | farm 3 Same as specific Crystalchain Traceability

Greasy wool blend Same as specific Crystalchain Traceability

Wool Processing |
Standard flow

Greasy wool blend Same as specific Crystalchain Traceability

Electricity Cardoso [20]; Table 15, col.1 CLM China Factory 2020

Steam Cardoso [20]; Table 15, col.1 CLM China Factory 2020

Water Cardoso [20]; Table 15, col.1 CLM China Factory 2020

Wastewater Cardoso [20]; Table 15, col.1 CLM China Factory 2020

Packaging Cardoso [20]; Table 15, col.1 CLM China Factory 2020

Chemicals Cardoso [20]; Table 15, col.1 CLM China Factory 2020

Wool waste Crystalchain Traceability

By-product (lanolin sold) CLM China Factory 2020

Wool top | standard Cardoso [20]; Table 15, col.1 Crystalchain Traceability

Wool Processing |
Superwash

Electricity CLM China Factory 2020

Steam CLM China Factory 2020

Water CLM China Factory 2020

Wastewater CLM China Factory 2020

Packaging CLM China Factory 2020

Chemicals CLM China Factory 2020

Wool waste CLM China Factory 2020

Wool top | Superwash Crystalchain Traceability

Wool Processing |
Recombing

Electricity CLM China Factory 2020

Packaging CLM China Factory 2020

Wool waste CLM China Factory 2020

Wool top | recombed Crystalchain Traceability

Wool Processing Group

Wool top | standard flow Crystalchain Traceability

Wool top | Superwash Crystalchain Traceability

Wool top | recombed Crystalchain Traceability

Wool top | processed Cardoso [20]; Table 15, col.1 Crystalchain Traceability
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Figure 1. Farms characteristics.

Table 1 lists all the LCA processes modeled and the data sources used to quantify all
the inputs and outputs of every process for each of the two LCAs carried out. The third
column discloses the data sources used to quantify each of the inputs and outputs modeled
in the generic LCA. The fourth column does the same for data used in the specific LCA.
Three main data sources have been used in this study:

• The paper of Cardoso [23] (specific tables used from this reference is in Table 1);
• The factory data collected from the industrial partner, CLM (CLM China Factory

2020); and
• The blockchain-based traceability platform of Crystalchain.

The constructed LCA model can be visualized in the following Figure 2. All the greasy
wool is processed following a standard flow during the combing mill processing stage. Then,
depending on the batch and customers’ specific requirements, it can also be processed through a
Superwash process or a recombing process, or directly packed to ship to the spinner for the next
transformation stage. In the following figure, the same colors are used to identify the different
processes and our results (discussed in Section 4) to easily visualize each stage’s impact.
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3.2. Integrated LCA-Blockchain Traceability Approach

Hereby we describe a systematic approach to integrate blockchain traceability into
the LCA process in order to provide specific data such as production volumes, energy
and water consumed, chemicals used, waste generated, packaging used, raw material
purchases, and direct emissions generated. The first generic LCA could be adapted, refined,
and specified into a specific LCA. Figure 3 presents the different steps necessary to build
this second specific LCA.
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The results of this specific LCA were compared to those of the generic LCA to quantify
the contribution of an integrated LCA-blockchain traceability calculation approach. It
should be noted that this second specific model is not 100% derived from data collected
on the blockchain platform but also from data sent by the client by email. Indeed, at
the time of our study, CLM did not have access to all of the data needed to establish an
LCA. For example, data on energy consumption or chemicals used were not available on
the platform.
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To perform the LCA, we used OpenLCA. Ecoinvent v.3 was used to model cradle-to-
gate inventory of the unit processes corresponding to those shown in Figure 2. The ReCiPe
endpoint 2016 characterization method was used (H, A). Indeed, this impact assessment
method proposes 18 impact indicators covering a wide range of environmental issues.

Moreover, it allows visualizing the results at the level of environmental problems,
environmental damages, and at the level of a single impact score.

To maintain the confidentiality of the industrial partner’s data, all results will be
expressed as a 100% comparative normalization.

4. Results and Discussion

The LCA results are structured in two sub-sections. The first sub-section compares
the generic LCA and the specific LCA. This comparison aims to evaluate and quantify the
importance of specific traceability data of the impact scores. The second sub-section
provides a number of sensitivity and scenarios analysis on the specific LCA only.

4.1. Comparative Results between Generic and Specific LCA

The scope of the LCA model is the same for both the generic LCA and the specific LCA,
the only difference being the contribution of CLM specific data for the specific LCA. First of
all, relative variation of impact scores was within 20% for all impact categories, except for
fossil resource depletion (FRD), with a relative difference of up to 50% (Figure 4). Second,
most of the environmental impact is associated with farming wool production, for which
we could not obtain specific data, as we can see in Figure 4. The agricultural processes for
both models are identical as they rely on generic data from Cardoso (2013). Both models
also assume the same wool composition supplied from conventional agriculture (farm 1).
However, the data sources used to model combing mill processing are clearly different in
the two models. Figure 4 presents a comparative contribution analysis between the two
LCAs for the selected impact categories.
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Figure 4. Impact contribution analysis for the generic LCA and the specific LCA with ReCiPe impact
assessment methodology with the functional unit: 1 kg of combed wool top at factory gate. Acronyms:
CC,EQ: Climate Change, Ecosystem Quality; TA: Terrestrial Acidification; WD,EQ: Water depletion,
Ecosystem Quality; CC,HH: Climate Change, Human Health; HT: Human Toxicity; PMF: Particulate
Matter Formation; WD,HH: Water Depletion, Human Health; FRD: Fossil Resources Depletion; MRD:
Mineral Resources Depletion.
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The “Total” column of Figure 4 presents the relative difference between the generic
and the specific LCA obtained by aggregating all damage indicators into a single score
using the hierarchical weighting factors of ReCiPe (40% Human health, 40% Ecosystem
quality, and 20% resources) as implemented in OpenLCA.

Despite the invariability of the agricultural process, the observed variability in the
impact scores for the different categories between the two LCA models can be explained by
two main causes:

• Firstly, the provision of specific data for the combing mill processing stage makes it
possible to specify in a more representative way the energy and the specific chemicals
and packaging used in the CLM process;

• Also, the specific data provided more accurate loss rates of wool during coming mill
processing. Losses are reported during washing, with the masses of organic matter,
and lanolin eliminated is accounted for in the mass of greasy wool in input. Additional
losses are reported at the sorting because of too short fibers and due to the different
wool scraps. From the traceability data on annual production volumes, a yield of
0.7 could be estimated at the combing processing, which differs from the yield of
0.85 initially determined for the generic LCA. These differences in yields change the
environmental impact proportionally, as the lower the yield, the more greasy wool
must be sourced to produce 1 kg of worsted wool. The difference in the modeling of
the yields between the two LCAs explains the difference in the impact obtained for
the farming wool production.

To better compare this gap between generic and specific LCAs, we can define a
variability rate:

τvar = 100 ∗
Scorespeci f ique − Scoregenerique

Scoregenerique

which measures the proportional difference of the specific from the generic for each impact
category. The rates of change by category are presented in Figure 5.
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The variability in impact scores for the combing mill processing life cycle stage in-
creased by +36% when supplied by traceability data and +20% overall when taking into
account the full life cycle (farming wool production + transport + combing mill processing).
In the climate change impact category, the variation is up to +150% within the combing
mill processing life cycle stage.

4.2. Sensitivity Analysis on Different Production Scenarios in the Specific LCA

In this sub-section, we perform sensitivity analysis on:

1. The composition of batch of wool fiber supplied from different origins. The baseline
results were obtained assuming a supply of 100% from conventional agriculture (farm
1). The percentages of wool fiber in a batch from farms 1, 2, and 3 vary.

2. The presence of an additional non-mandatory process of Superwash in the combing
mill processing. This process uses a lot of water and chemicals to treat the wool in
order to extend the lifetime of wool during the consumer’s use phase.

The sensitivity analysis is combined into the five scenarios presented in Table 2.

Table 2. Scenario analysis as a function of the composition of a batch of wool fiber and the presence
(or not) of the non-mandatory process of Superwash in the combing mill processing.

N◦ Name Farm_1 Farm_2 Farm_3 Standard Recombing Superwash

1 Wool mix 0.33 0.33 0.33 1 0 0

2 Conventional wool 1 0 0 1 0 0

3 Intensive wool 0 1 0 1 0 0

4 Extensive wool 0 0 1 1 0 0

5 Extensive wool + Superwash 0 0 1 0 0 1

The scenarios are based on six different parameters. The first three parameters (Farm_1,
Farm_2, and Farm_3) quantify the proportion of wool sourced from each of the three farms
presented in Figure 1 in the total wool blend composition. For example, in scenario 1,
Farm_1 = 0.33 means that 33% of the wool blend is composed of wool sourced from farm 1.
In scenarios 1 to 4, only those three parameters are modified to compare the impact of
different wool blend compositions. The last three parameters (Standard, Recombing, and
Superwash) are used to select one of the three processing paths described in Figure 2.
Therefore, the difference between scenario 4 and scenario 5 is to underline the impact of
an additional Superwash process on the overall impact of wool top lots. The wool blend
composition is the same between both scenarios. It is important to note that no scenario
considering the recombing step was proposed because its impact was considered negligible
compared to all other processing steps.

By performing a contribution analysis of the single score results (obtained by ReCiPe
endpoint 2016 characterization method (H, A)), we observe that over 58% of the total
weighted impact score for each scenario was due to the climate change impact category
(see Appendix A). Based on this observation, a contribution analysis by life cycle stage
of the climate change impact category has been performed for each of the five modeled
scenarios, as presented in Figure 6.
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Figure 6. Contribution analysis by life cycle stage on the climate change impact category for the five
scenarios defined in Table 2.

It can be observed that in all the scenarios, the upstream agricultural stage of sheep
rearing—or farming wool production in the chart legend (including Farm 1, Farm 2, and
Farm 3 stages)—contributes more than 90% of the total climate change impact scores. The
balance, i.e., less than 10%, is due to the combing mill processing and transport life cycle
stages (including Superwash, Processing, and Transport stages in the chart legend). The
transport stage has an almost insignificant contribution to climate change, assuming that
the transport is done by boat. The first interpretation of these results is that the need to
obtain specific production data is particularly important for the agricultural phases of wool
products, given their predominant impact. A first limit to the use of blockchain traceability
systems for the LCA calculation of wool products can therefore be posed: if the system
is not implemented at the wool farming suppliers, the value contribution of blockchain
traceability to perform an LCA will be strongly reduced since it will only characterize
the transformation stages in a precise manner and will leave a strong uncertainty on the
upstream LCA calculation. Thus, an important verification criterion before using LCA-
blockchain would be to ensure sufficient adoption of the traceability system on the most
contributing upstream life cycle stages of the value chain.

We can see that scenario 2 of pure conventional agriculture (100% of farm 1, the same
scenario used to compare generic and specific LCA) represents only 39% of the impact on
climate change of scenario 5. In other words, the impact of scenario 5 is +156% compared
to scenario 1. The interpretation that can be drawn from these results is that knowledge
of both the composition of the wool batches and the optional transformation processes
that they undergo is decisive for a good characterization of the impact of the product. In
other words, the different batches of wool, which have on average the same characteristics
when leaving the factory, can have highly random impacts, varying from more than simple
to double.

Figure 7 compares the relative impacts of the five scenarios on different impact categories.
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Figure 7 shows that there is an important variation in impact scores between the
different scenarios. This variation ranges from +50% for the mineral resource depletion
(MRD) indicator between the Conventional and the Extensive + Superwash scenarios and
up to +450% for the human toxicity (HT) indicator between the Conventional and the
Extensive scenarios. However, this last result must be considered significant since the
category of impact on human toxicity has high uncertainty, and only differences over an
order of magnitude can be considered significant. Variability across all categories suggests
that the parameters modulated in the different scenarios can significantly modify the impact
values obtained.

4.3. Outlook

The results obtained allow us to make three statements about the production of
worsted wool:

1. The highly specific data provided by the blockchain traceability systems allow the im-
pact of wool lots to be characterized in a much more granular and representative way
than generic data. Indeed, the generic data do not provide a sufficient understanding
of the impacts at stake in a production system, since the specificity of the data leads
to an almost systematic increase in the impact on the different indicators. Therefore,
specific traceability data provides a more accurate picture of the impact of production.

2. Blockchain traceability systems are only relevant for LCA calculation if implemented
on the upstream agricultural production process, which is the most important stage
of the life cycle for the environmental impact of combed wool batches.

3. The impact of worsted wool batches is highly dependent on the origin of the raw
materials in the batch, and the optional transformation processes followed. This
information can be provided in a differentiated way for every batch by blockchain
traceability platforms.

Therefore, it can be argued that blockchain traceability facilitates the creation of LCA
inventories and makes it possible to associate each chain of traceability, and therefore each
product batch, with a unique environmental impact. It remains to be seen what need



Sustainability 2022, 14, 2109 13 of 15

this segmentation of impacts by product batch meets. First of all, we can think of the
imminent environmental display of textile products, both at the French environmental
labeling level [2] and at the European level with product environmental footprint category
rules (PEFCR) [24]. It will soon be legally mandatory to communicate an ABCDE rating
representing the environmental impact of its products. Thus, blockchain traceability could
be a facilitator for the compliance of industrial actors on this point while providing a
lever for improving the environmental impact of new products. Also, differentiating the
impact by batch could be an interesting strategic decision support tool for raw material and
product buyers. Understanding and evaluating the impact of each single batch according
to their origin could make it possible to control and manage the company’s sustainable
strategy in almost real-time, communicate the company’s responsible commitment to its
customers, and provide the knowledge necessary for the eco-design of future products.
We could even imagine the future use of classification and segmentation algorithms to
determine the importance of strategic choices on the impact of industrial products by using
the LCA-blockchain results of each product batch as a massive database.

5. Conclusions

This research paper aimed to evaluate how blockchain traceability could improve
LCA results’ representativity in textile products by enhancing primary data collection and
quantifying this improvement potential against a generic LCA. Two main results were
obtained: the environmental impact of the wool top lots can vary drastically depending on
their composition and the origin of the wool (up to +118% on the overall environmental
impact between two batches of different compositions) and the specific data provided by
traceability strongly changes the perception of the impact of wool top lots compared to
generic data for a fixed wool composition (+36% of calculated impact on the processing step
with specific data). From these results, we can conclude that blockchain traceability data
could provide a better understanding and characterization of the impacts of a product by
unit lot. This increased understanding could help improve the environmental sustainability
of the supply chain, guide the product eco-design, and increase transparency on product
life cycle impact to the customer.

However, several limitations from an LCA perspective must be mentioned. First, the
absence of specific production data for the upstream agricultural phase did not allow us to
characterize this life cycle stage in a granular way, although it is the main contributor. This
necessarily impacted the level of interpretability of the results obtained. Also, our study
has a limited scope, so the conclusions reached cannot be generalized to other cases. There
is no guarantee that the conclusions drawn here can be applied to other textile sectors and
even less to other industrial sectors. In addition, the final processing, distribution, use, and
end-of-life stages of wool products were not modeled in this study.

To address these limitations, several avenues for future research can be envisioned.
First, further study on the categorization of farm inventories according to their agricultural
practices and location could generate more accurate impact measurement and provide
a reference data set of supplier farms in case of unavailability of specific data in the
traceability model. Also, other studies quantifying the contributions of blockchain LCA on
other textile chains and other industrial sectors would determine whether the conclusions
put forward in this article can be generalized. Carrying out large-scale implementation of
an LCA-blockchain traceability system could also validate the different hypotheses and
findings put forward in this article. The question of trust and data quality entered on the
blockchain are other essential questions that need to be addressed in future research.
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Appendix A

This Appendix A discloses the contribution of different impact categories to the single
score calculated with the ReCiPe endpoint 2016 (H,A) methodology. The results are shown
for each of the five different scenarios in Figure A1.
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